Hydrocarbon Processing Copying and distributing are prohibited without permission of the publisher
Email a friend
  • Please enter a maximum of 5 recipients. Use ; to separate more than one email address.



Avoid brittle fracture in pressure vessels

03.01.2011  |  Khazrai, F. ,  Chagalesh Consulting Engineers, Tehran, IranHaghighi, H. B. ,  Chagalesh Consulting Engineers, Tehran, IranKordabadi, H. ,  Chagalesh Consulting Engineers, Tehran, Iran

Key points identify effects from auto-refrigeration on steel vessels

Keywords: [corrosion] [metallurgy] [welding] [reactors] [vessels] [alloys] [steel]

During an emergency, equipment failure or a planned maintenance event, hydrocarbon-processing industry (HPI) pressure vessels are normally depressurized. This action may cause auto-refrigeration and low-metal temperature situations in which the likelihood of brittle fracture may occur in steel vessels and reactors. This case history describes the results from a simulation regarding auto-refrigeration effects on HPI reactors. The study also included investigation on brittle-fracture phenomenon and recommendations for a proactive engineering approach to mitigate such failures. Key points highlighted from the study are:

• Although the process-fluid temperature from auto-refrigeration drops to –86°C, considering the vessel’s metal-mass heat capacity and ambient temperature, the short-term vessel minimum metal temperature does not become colder than –28°C. Therefore, selecting expensive material of construction can be avoided.

• Complying with the ASME rules or other internationally recognized codes for minimum requirements is crucial to the structural integrity of a pressure vessel. However, proactive engineering practices and precautions pertaining to the design, materials, fabrication, nondestructive examinations and operation are also required to ensure that the vessels are resistant to brittle fracture.

Process engineering

This case study focuses on a gas field production facility, which uses several separation vessels and a stabilization unit to obtain dew-point control for the natural gas products and Rvp-controlled condensate products. The process vessels operate as three-phase separators containing vapor, light-liquid hydrocarbons and heavy-liquid phase. The study focused on the simulation and design of three interconnected separation vessels—V-100, V-101 and V-102 (Fig. 1).

 

  Fig. 1. Flow diagram of three vessels for the
  separation process of the gas plant. 




Since in accordance with API 521, all process equipment with operating pressure higher than 18 barg must be depressurized in case of an incidence, the fluid pressure should be reduced to 6.9 barg and the blowdown lines including the restricted orifice were designed based on depressurizing to 6.9 barg within 15 minutes.4 In practice during depressurization and blowdown events, the actual vessel-fluid pressure drops from operating pressure (initial pressure) down to almost atmospheric pressure (final pressure). The general assumptions and process design basis parameters used in the simulation include:

• Minimum ambient temperature of –13°C is the minimum outer metal-wall temperature of the vessels

• “PV work term contribution” is defined as isentropic expansion efficiency and assumed as 100% (a conservative assumption)

• Construction material is carbon steel

• Other design basis parameters are listed in Table 1.

 



The first simulation was done without including the vessels’ metal mass. In other words, the control volume of depressurization study was limited to the fluid inside the vessel, and the metal-wall temperature was assumed to be the same as the inventory fluid temperature. Also, the temperature difference between vapor and liquid was assumed to be negligible. Table 2 lists the final fluid temperatures obtained in the first simulation.

In the second depressurization simulation, the metal mass of each vessel was included in the control volume of the model. Table 3 shows the results of the second simulation based on the metal mass values. As shown in Table 3, the calculated inner-wall temperatures are considerably higher than the calculated fluid final temperatures listed in Table 2 from the first simulation.

 



The simulation work indicates that including the metal-mass heat capacity into evaluation increases the accuracy of estimated minimum metal temperature of the vessels. Consequently, more accurate vessel wall temperatures aid cost-effective selection of construction materials for the separation vessels.

Mechanical engineering

All three separation vessels were designed using ASME Code Section VIII , Division 2. Table 4 lists the design data for the separation vessles.5

MDMT of vessels.

The minimum design metal temperature (MDMT) of a vessel is the minimum metal temperature in which the vessel can sustain its full design pressure without having to be impact tested. When the vessel operates at pressures less than its full design pressure, concessions on MDMT are allowed based on ASME Section VIII. Table 5 lists the result of MDMT calculations for this study’s vessels based on ASME, Section VIII, Div. 2.

Minimum allowable temperature (MAT), as defined in API 579, is “the lowest (coldest) permissible metal temperature for a given material and thickness based on its resistance to brittle fracture. It may be a single temperature or an envelope of allowable operating temperatures as a function of pressure.6 The MAT is derived from mechanical design information and material specification. MAT at design pressure is MDMT.

Lowest metal temperature (LMT). LMT as defined and used in this article is the lowest metal temperature due to the operating condition and minimum ambient temperature. The LMT may be a single temperature at an operating pressure or an envelope of temperatures and coincident pressures. Actually, the LMT, in this case, is derived from the calculated inner wall temperature due to the contained process fluid temperature and also the minimum ambient temperature. The LMTs of the vessels coincident with final pressures (after depressurization and blowdown) are shown in Table 6.

 



As shown in Figs. 2–4 and Table 6, the LMTs for all of the vessels at the final pressure as well as other coincident pressures are on the safe side based on the rules and design philosophy of ASME Section VIII Div. II. Although the code requirements have been satisfied, further considerations and precautions are required to ensure the design and construction of the vessels are resistant against brittle fracture. Several key factors in combination can contribute to brittle fracture of steel vessels; a proactive engineering approach is recommended.

 

  Fig. 2. LMT curve for vessel, V-100, during
  depressurization event. 



 

  Fig. 3. LMT curve for vessel, V-101, during
  depressurization event. 



 

  Fig. 4. LMT curve for vessel, V-102, during
  depressurization event. 



Brittle fracture phenomena

The major concern for low-temperature vessels is brittle-fracture phenomenon, which can be a cause for vessel failure. Many metals loose their ductility and toughness; they become susceptible to brittle fracture as the metal temperature decreases. At normal or higher temperatures, a warning is normally given by plastic deformation (bulging, stretching or leaking) as signs of potential vessel failure. However, under low-temperature conditions, no such warnings of plastic deformation are given. Unfortunately, an abrupt fracture can cause a catastrophic event.

Only materials that have been impact tested to ensure metal toughness at or above a specified metal temperature should be used. However, certain paragraphs in the ASME Pressure Vessel Code applying to low-temperature vessels indicate when impact testing may not be required for a pressure-vessel component material (impact test exemptions). In general, four main factors, in combination, can cause brittle fracture of steel vessels. These factors are represented in the form of “brittle fracture square” as shown in Fig. 5. The factors that contribute to the brittle fracture of carbon or low-alloy steel pressure vessels are reviewed briefly here:

 

  Fig. 5. Brittle fracture square affecting carbon
  and low-alloy steels at low temperatures. 



Low temperature.

A metal depending on its toughness property has a transition temperature range within which it is in a semi-brittle condition (ductile to brittle transition). Within this range, a notch or crack may cause brittle fracture (notch brittleness). Above the transition range (warmer), brittle fracture will not happen even if a notch exists. Below the transition range (colder), brittle fracture can happen even though no notches or cracks may exist.3 Although the transition from ductile to brittle fracture actually occurs over a temperature range, a point within this range is selected as the “transition temperature” to delineate the boundaries of ductile and brittle zones. One of the ways to determine this temperature is by performing many impact tests on the construction material.

Loading.

The type and level of mechanical/thermal loading will affect the vessel’s susceptibility to brittle fracture. Dynamic loading associated with cyclic mechanical/thermal or impact loading, as opposed to quasi-static loading, is a brittle-fracture contributing factor. Furthermore, shock-chilling effects, defined as rapid decreases in equipment temperatures, can be a cause for brittle fracture.6 Based on the stress levels applied (in a quasi-static loading), component material, effective thickness and minimum metal temperature, ASME Section VIII, Divisions 1 and 2 present criteria for vessel-component material-impact test requirements and/or exemptions.

Susceptible steel.

Susceptibility of steels depends on several parameters such as poor toughness, material flaws (cracks and notches), corrosion vulnerability, large thickness, etc.:

• Steel composition. Steels with lower carbon content (C) are proven to have higher toughness at lower temperatures. Also, phosphorous (P) present in steels decreases the transition temperature of steel and improves weldability. In general, steel-transition temperature is a function of carbon content percent plus 20 times the percentage of phosphorous. Furthermore, adding nickel to steel can increase steel toughness and decrease its transition temperature. Stainless steel 304 with 8% nickel can resist impact loads at –320°F. Furthermore, sufficiently low carbon equivalents contribute to the weldability of the material (reducing hardness and cold-cracking susceptibility) and, thus, making metal crack-free girth welds.4 Selecting the appropriate welding material also is a determining factor to ensure a crack-free weld.3

• Steel structure. A correlation was developed between steel structure (microstructure and grain size) and fracture-toughness by numerous fracture toughness tests at different low temperatures. Based on this correlation, steels with coarse-grained microstructures have lower toughness at low temperatures as compared to steels with the fine-grained microstructure. During an 1999 incidence with a high-density polyethylene (HDPE) reactor, a brittle fracture occurred at a temperature of –12°C in a 24-in. flange of ASTM A105 material that had a coarse-grain microstructure (ASTM grain size number 5 to 6 ferrite-pearlite microstructure ).1a

• Hydrogen cracks (hydrogen-induced cracks or so-called flakes). When hydrogen atoms diffuse into the metal during material manufacturing operations such as forming, forging and welding or when hydrogen is introduced to the metal through a galvanic or hydrogen sulfide (H2S) corrosion process, the metal is prone to hydrogen cracks.

There are various techniques to prevent hydrogen cracks, including appropriate heat treatments or slow cooling after forging, in which the hydrogen within the metal diffuses out. In the case of welding, usually pre-heating and post-heating are applied to diffuse out the hydrogen and to prevent any cracks and brittleness.

• Environmental stress fracture. Steels exposed to corrosive fluids such as wet H2S, moist air or sea water are prone to premature fracture under tensile stresses, considerably below their “fracture toughness” threshold. Suitable steel materials should be used when exposure to corrosive fluids is possible.

Crack/stress risers.

Steel vessels with thicker walls have a greater probability potential for brittle fracture due to the larger thermal gradient across the wall thickness. Thicker metal walls can result in differential expansion of material across the wall thickness and could possibly lead to a crack occurrence and eventually brittle fracture.

Stress raisers such as sharp or abrupt transitions or changes of sections, corners or notches (as may be found in weld defects) as a result of design or fabrication processes are all stress risers, which can cause stress intensification. The weak points are prone to brittle fracture when other susceptible conditions exist.

Proactive engineering

Based on the brief technical information given here, several proactive measures can ensure resistance of carbon or low-alloy steel vessels against brittle fracture under quasi-static loading:

• Design pressure vessels, if justifiable, by analysis in accordance with the ASME Section VIII, Div 2 part 5, or other internationally recognized codes that result in lower wall thicknesses.

• Order vessel materials from reliable and capable manufacturers. Key vessel components still require attention to proper heat treatment, avoiding hydrogen cracks, quality control, etc.

• Specify fine-grain steel materials with appropriate specifications and require production tests for plate/piece (from the same heat) if an impact test is not requested. Ensure that the steel with fine-grain microstructure/toughness is supplied; do not rely just on the material certificates. Also, conduct impact tests on test pieces to verify required toughness.

• Take benefit of the recommendations contained in the document indicated in reference 1 for ordering pipe flanges made in forged steel complying with ASTM A105.

• Ask the material manufacturer for effective construction/fabrication methods such as vacuum degassing to prevent hydrogen-crack formation in the metal and require stringent nondestructive examinations and quality control.

• Do nondestructive testing (NDT) to identify cracks or reject materials with detectable cracks.

• Eliminate “stress risers,” at the design and fabrication stages

• Verify full-penetration welds with adequate toughness using appropriate welding material/processes and require weld-procedure qualification and production-weld test specimens for both the weld and heat-affected zone for each weld process.c

• Conduct proper vessel post-weld heat treatment (PWHT), preferably in a furnace in one piece whenever practical, and examine heat-affected zone hardness to ensure the beneficial effects of the performed PWHT.d

• Perform the vessel hydrostatic test in accordance with the rules of the ASME Section VIII Code or other internationally recognized codes.b

• Apply “control of operation” proactively, whenever practical, (e.g., after a depressurizing to ensure that the vessel metal temperature is sufficiently warm prior to re-pressurization).

A proactive engineering program, as envisioned in Fig. 6, can incorporate the listed measures during vessels design, procurement and construction stages. HP

 

  Fig. 6. Proactive engineering program in
  designing and manufacturing vessels to avoid
  brittle fracture from auto-refrigeration. 




NOTES

a Research was conducted by the Belgian Institute for Welding Techniques on pipe flanges made in forged steel complying with ASTM A105. In June 2002, the study produced a series of recommendations for new flanges as well as flanges already in service.1

b The beneficial effect of a hydrostatic test is that crack-like flaws located in the component are blunted resulting in an increase in brittle fracture resistance.6

c Requiring full penetration would minimize any highly localized stresses (especially at Category C and D joints) that can have deleterious effect on the vessel’s ability to resist brittle fracture.”2

d Carbon equivalent in terms of welding is a rate of weldability related to different alloying elements including carbon, manganese, chromium, molybdenum, vanadium, nickel and carbon content, which affect hardness of the steel being welded.

e Fracture toughness is an important property of any material for virtually all design applications; it indicates the ability of a material containing a crack to resist fracture.

f Proper PWHT reduces residual stresses, improves the resistance of the hard heat affected zone to environmental cracking, and improves the toughness.

LITERATURE CITED

1 “Recommendations for pipe flanges made in forged steel complying with   ASTM A105,” July 2002, Chemical Risks Directorate, Technical Inspectorate, Administration of Labor Safety, Federal Ministry of Employment and Labor.
2 Rao, K. R., Companion guide to the ASME Boiler & Pressure Vessel Code.
3 Brownwell, L. E. and E. H. Young, Process Equipment Design.
4 Pressure-relieving and Depressuring Systems, ANSI/API STANDARD 521, Fifth Edition, January 2007.
5 2007 ASME Boiler and Pressure Vessel Code, Section VIII, Division 2, “Alternative Rules for Construction of Pressure Vessels.”
6 Fitness-For-Service, API 579 -1/ASME FFS-1, June 5, 2007, Part 3.

The authors 

 
 

Faramarz Khazrai has worked as a mechanical engineer for over 30 years in the areas of piping, static equipment and machinery. In 1986, he joined Chagalesh Consulting Engineers, Tehran, Iran, and supervised mechanical engineering activities of several hydrocarbon processing projects. Currently, he is the machinery department head. He graduated from the Sharif University of Technology with BS degree in mechanical engineering in 1972.  


 
 

Hamed Basir Haghighi is a mechanical engineer specializing in the area of static equipment engineering. He has participated in various hydrocarbon processing projects at Chagalesh Consulting Engineers since 2001. Currently, he is the static equipment project specialty leader and also project engineering manager. His fields of specialization are detail design of static equipment, composite material selection and finite element method. He graduated from Azad University of Tehran with BS and MS degrees in mechanical engineering. 


 
 

Hojat Kordabadi, as a process engineer, has participated in the design of various process plants pertaining to the hydrocarbon processing industry. He joined Chagalesh Consulting Engineers in 2007 and has worked in the process engineering department as a project specialty leader. He is the author of three technical paper published in the Chemical Engineering Journal (April 2005, December 2007, September 2008). He holds a BS degree in chemical engineering from Amir Kabir University and a M.S. degree in chemical engineering from Shiraz University, Shiraz, Iran. 





Have your say
  • All comments are subject to editorial review.
    All fields are compulsory.

Mounir
05.01.2013

referring to the article, my understanding is that ordinary carbon steel is still recommended for low temperature service of -28°C. i need a confirmation.

Flow Tech Equipments
04.12.2013

I have registered my company profile in your company only in the near past. But results are very fruitful and productive. Thanks to your great service.
My company Site-http://www.flowtechequipments.com


04.15.2011

As one of the authors of this article I would like to mention that the article actually does not claim “A105” is a suitable material for “low temperature application”. ASTM standard states that A105 is to be used for ambient temperature and higher, but it does not indicate which ambient temperature on our earth. AS far as low temperature is concerned I believe the article is quite more conservative than ASME section 8 or ASTM A105. Reading the reference 1 (literature cited) of the article is highly recommended.

Faramarz Khazrai


04.12.2011

I appreciate the comments.

I would be pleased to summarize my understanding from "ASME VIII Division 2" for this case in paragraph below:

As explained in section 3.11.2.7, "Vessels or components may be operated at temperatures colder than the MDMT stamped on the name- plate", but not lower than -104°C and under specific conditions. Actually, MDMT is a function of "Design Load" which includes pressure and several other items. As I see it, the decreasing the Design Load, the MDMT reduces.

I agree that review the dynamic of Design Load would be over-collaborated as a general procedure; also, some considerations in Design Philosophy (i.g. Re-pressurizing) do not allow pressured systems to be operated below MDMT stamped on the name-plate. Indeed, this paper is a review for a more sophisticated material selection that is applicable in special cases such as Brownfield projects.

H Kordabadi


04.09.2011

As one of the authors of this article I would like to mention that the article actually does not claim “A105” is a suitable material for “low temperature application”. ASTM standard states that A105 is to be used for ambient temperature and higher, but it does not indicate which ambient temperature on our earth. As far as low temperature application is concerned I believe the article(in proactive engineering part) is quite more conservative than ASME Section 8 code or ASTM A105. Reading the reference 1 (literature cited) of the article is highly recommended.


04.06.2011

Regarding the comments of D.M. Barny on this article, though the ASTM standard directly indicates A105 specification covers ambient and higher-temperature service in pressure system , the ambient temperature of many facilities during winter time may reach as low as -30oC or lower. ASTM does not indicate which ambient temperature.


04.06.2011

concise ,clear and to the point

Good article for a mechanicalengineer like me ... to understand what the process is cooking


03.25.2011

Gentlemen:
The definition of MDMT given in the article is not with the ASME Code definition.
Otherwise - very interesting article, thank you!
Regards,
Oleg A. Barsky, P.E.


03.21.2011

I had a free time to read the content of this article and decided to write following comments:
1-How the authors can claim that A105 is a suitable material for low temperature applications? I bring their attention to the ASTM standard where it directly indicate A105 can be only used for ambient or above temperature and not low temperature.
2-The authors have specified some conditions for using A105 in "proactive engineering part" . I should note if we are to use a material with these conditions then we surely use a low temperature one and not a simple carbon steel!
3- I do not know if the authors have seen the impact test results for the ordinary carbon steel materials in the laboratory? The results show the absorbed energy of between 3-7 J for the temperature in the range of -5 to -10 degree. Therefore, I am really in doubt if we can use A105 or equivalent material for low temperature applications.
Thank you and I remain with:
Kind Regards,
D.M.Barny


03.21.2011

I had a free time to read the content of this article and decided to write following comments:
1-How the authors can claim that A105 is a suitable material for low temperature applications? I bring their attention to the ASTM standard where it directly indicate A105 can be only used for ambient or above temperature and not low temperature.
2-The authors have specified some conditions for using A105 in "proactive engineering part" . I should note if we are to use a material with these conditions then we surely use a low temperature one and not a simple carbon steel!
3- I do not know if the authors have seen the impact test results for the ordinary carbon steel materials in the laboratory? The results show the absorbed energy of between 3-7 J for the temperature in the range of -5 to -10 degree. Therefore, I am really in doubt if we can use A105 or equivalent material for low temperature applications.
Thank you and I remain with:
Kind Regards,
D.M.Barny


03.08.2011

thanks mr bassir haghighi,hamed

Related articles

FEATURED EVENT

GasPro North America

Sign-up for the Free Daily HP Enewsletter!

Boxscore Database

A searchable database of project activity in the global hydrocarbon processing industry

Poll

Should the US allow exports of crude oil? (At present, US companies can export refined products derived from crude but not the raw crude itself.)


68%

32%




View previous results

Popular Searches

Please read our Term and Conditions and Privacy Policy before using the site. All material subject to strictly enforced copyright laws.
© 2014 Hydrocarbon Processing. © 2014 Gulf Publishing Company.