December 2011

Special Report: Plant Design and Engineering

Optimize capacity for large ethylene oxide reactors

Many factors must be considered in fine-tuning unit design

Crudge, B., Billig, B., Schneider, R., Scientific Design Co.

Ethylene oxide (EO) is an important chemical intermediate, with annual global consumption of approximately 30 million tpy. Most of the EO is hydrolyzed to produce ethylene glycol (EG), but other important products are also made from EO, including ethanolamines, glycol ethers and various ethoxylates. EO is produced commercially via a vapor-phase reaction of ethylene and oxygen over a silver-based catalyst. This reaction is exothermic, and the unselective reaction to complete combustion is even more so. Conversion must be kept low to ensure high selectivity to EO. Accordingly, heat must be removed from the reacting process gas efficiently within the reactor to allow good control at low conv

Log in to view this article.

Not Yet A Subscriber? Here are Your Options.

1) Start a FREE TRIAL SUBSCRIPTION and gain access to all articles in the current issue of Hydrocarbon Processing magazine.

2) SUBSCRIBE to Hydrocarbon Processing magazine in print or digital format and gain ACCESS to the current issue as well as to 3 articles from the HP archives per month. $409 for an annual subscription*.

3) Start a FULL ACCESS PLAN SUBSCRIPTION and regain ACCESS to this article, the current issue, all past issues in the HP Archive, the HP Process Handbooks, HP Market Data, and more. $1,995 for an annual subscription.  For information about group rates or multi-year terms, contact email Peter Ramsay or call +44 20 3409 2240*.

*Access will be granted the next business day.

Related Articles

From the Archive



{{ error }}
{{ comment.comment.Name }} • {{ comment.timeAgo }}
{{ comment.comment.Text }}